977 research outputs found

    Unimpeded permeation of water through helium-leak-tight graphene-based membranes

    Full text link
    Permeation through nanometer pores is important in the design of materials for filtration and separation techniques and because of unusual fundamental behavior arising at the molecular scale. We found that submicron-thick membranes made from graphene oxide can be completely impermeable to liquids, vapors and gases, including helium, but allow unimpeded permeation of water (H2O permeates through the membranes at least 10^10 times faster than He). We attribute these seemingly incompatible observations to a low-friction flow of a monolayer of water through two dimensional capillaries formed by closely spaced graphene sheets. Diffusion of other molecules is blocked by reversible narrowing of the capillaries in low humidity and/or by their clogging with water

    The Making of Cloud Applications An Empirical Study on Software Development for the Cloud

    Full text link
    Cloud computing is gaining more and more traction as a deployment and provisioning model for software. While a large body of research already covers how to optimally operate a cloud system, we still lack insights into how professional software engineers actually use clouds, and how the cloud impacts development practices. This paper reports on the first systematic study on how software developers build applications in the cloud. We conducted a mixed-method study, consisting of qualitative interviews of 25 professional developers and a quantitative survey with 294 responses. Our results show that adopting the cloud has a profound impact throughout the software development process, as well as on how developers utilize tools and data in their daily work. Among other things, we found that (1) developers need better means to anticipate runtime problems and rigorously define metrics for improved fault localization and (2) the cloud offers an abundance of operational data, however, developers still often rely on their experience and intuition rather than utilizing metrics. From our findings, we extracted a set of guidelines for cloud development and identified challenges for researchers and tool vendors

    High pressure X-ray preionized TEMA-CO2 laser

    Get PDF
    The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5–20 atm, yielding a specific laser output in the order of 35 J/l

    FLIPS: Federated Learning using Intelligent Participant Selection

    Full text link
    This paper presents the design and implementation of FLIPS, a middleware system to manage data and participant heterogeneity in federated learning (FL) training workloads. In particular, we examine the benefits of label distribution clustering on participant selection in federated learning. FLIPS clusters parties involved in an FL training job based on the label distribution of their data apriori, and during FL training, ensures that each cluster is equitably represented in the participants selected. FLIPS can support the most common FL algorithms, including FedAvg, FedProx, FedDyn, FedOpt and FedYogi. To manage platform heterogeneity and dynamic resource availability, FLIPS incorporates a straggler management mechanism to handle changing capacities in distributed, smart community applications. Privacy of label distributions, clustering and participant selection is ensured through a trusted execution environment (TEE). Our comprehensive empirical evaluation compares FLIPS with random participant selection, as well as two other "smart" selection mechanisms - Oort and gradient clustering using two real-world datasets, two different non-IID distributions and three common FL algorithms (FedYogi, FedProx and FedAvg). We demonstrate that FLIPS significantly improves convergence, achieving higher accuracy by 17 - 20 % with 20 - 60 % lower communication costs, and these benefits endure in the presence of straggler participants

    Sedimentational, structural and migmatitic history of the Archaean Dharwar tectonic province, southern India

    Get PDF
    The earliest decipherable record of the Dharwar tectonic province is left in the 3.3 Ga old gneissic pebbles in some conglomerates of the Dharwar Group, in addition to the 3.3–3.4 Ga old gneisses in some areas. A sialic crust as the basement for Dharwar sedimentation is also indicated by the presence of quartz schists and quartzites throughout the Dharwar succession. Clean quartzites and orthoquartzite-carbonate association in the lower part of the Dharwar sequence point to relatively stable platform and shelf conditions. This is succeeded by sedimentation in a rapidly subsiding trough as indicated by the turbidite-volcanic rock association. Although conglomerates in some places point to an erosional surface at the contact between the gneisses and the Dharwar supracrustal rocks, extensive remobilization of the basement during the deformation of the cover rocks has largely blurred this interface. This has also resulted in accordant style and sequence of structures in the basement and cover rocks in a major part of the Dharwar tectonic province. Isoclinal folds with attendant axial planar schistosity, coaxial open folds, followed in turn by non-coaxial upright folds on axial planes striking nearly N-S, are decipherable both in the "basement" gneisses and the schistose cover rocks. The imprint of this sequence of superposed deformation is registered in some of the charnockitic terranes also, particularly in the Biligirirangan Hills, Shivasamudram and Arakalgud areas. The Closepet Granite, with alignment of feldspar megacrysts parallel to the axial planes of the latest folds in the adjacent schistose rocks, together with discrete veins of Closepet Granite affinity emplaced parallel to the axial planes of late folds in the Peninsular Gneiss enclaves, suggest that this granite is late-tectonic with reference to the last deformation in the Dharwar tectonic province. Enclaves of tonalite and migmatized amphibolite a few metres across, with a fabric athwart to and overprinted by the earliest structures traceable in the supracrustal rocks as well as in a major part of the Peninsular Gneiss, point to at least one deformation, an episode of migmatization and one metamorphic event preceding the first folding in the Dharwar sequence. This record of pre-Dharwar deformation and metamorphism is corroborated also by the pebbles of gneisses and schists in the conglomerates of the Dharwar Group. Volcanic rocks within the Dharwar succession as well as some of the components of the Peninsular Gneiss give ages of about 3.0 Ga. A still younger age of about 2.6 Ga is recorded in some volcanic rocks of the Dharwar sequence, a part of the Peninsular Gneiss, Closepet Granite and some charnockites. These, together with the 3.3 Ga old gneisses and 3.4 Ga old ages of zircons in some charnockites, furnish evidence for three major thermal events during the 700 million year history of the Archaean Dharwar tectonic province
    • …
    corecore